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Abstract

Applying equal testing and verification effort to all parts of a software system is not very
efficient, especially when resources are limited and scheduling is tight. Therefore, one
needs to be able to differentiate low/high fault frequency components so that testing /
verification effort can be concentrated where needed Such a strategy is expected to detect
more faults and thus improve the resulting reliability of the overall system. This paper
presents the Optimized Set Reduction approach for constructing such models, intended to
fulfill specific software engineering needs. Our approach to classification is to measure the

software system and build multivariate stochastic models for predictiing high risk system
components. We present experimental results obtained by classifying Ada components into
two classes: is or is not likely to generate faults during system and acceptance test. Also,

we evaluate the accuracy of the model and the insights it provides into the error making
process.

Key words- Optimized Set Reduction, data analysis, fault-prone Ada components,

stochastic modeling, machine learning, classification trees, logistic regression.

1 Introduction

It has been noted that a small number of software components are responsible for a disproportionately
large number of faults in any large-scale system [BP84, SP88, MK92]. Therefore, if we can identify
components that are likely to produce a large number of faults, we can concentrate the verification and

testing processes on them. This allows us to optimize the reliability of our software system with

minimum cost. To do this, we build quantitative models that predict which components are likely to
contain the highest concentration of faults. However, building such models is a difficult task: it is often

the case in software engineering that the data which is collected is minimal, incomplete and
heterogeneous [BBT92]. This presents several problems for model construction and interpretation (e.g.,
small data sets, inaccurate models, outliers). Therefore, we need a modeling process that is robust to
these problems, allows for the reliable classification of high risk components (those that have a high
probability of generating a fault during system or acceptance test), and aids in the understanding of the
causes of this high risk. This understanding is important because it can give us insight into the software
development process, allowing us to take remedial actions and make better process decisions in the
future.

In this context, we will examine the use of the following modeling approaches:

• Logistic regression, which is one of the most commonly used classification techniques [Agr90,
HL89]. This technique has been applied to software engineering modeling [MK92], as well as

other experimental fields, and will therefore be used as a baseline for comparison in this paper.

1 Research for this study was supported in part by NASA grant NSG 5123 and NSF grant 01-5-24845
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Many assumptions and constraints inherent to this technique make if'difficult to apply in a
software engineering context: (1) non-monotonicity of the probability density function on the
explanatory variable range (2) interactions between explanatory variables are difficult to take into

account when performing exploratory data analysis with numerous explanatory variables.

• Classification trees, which are described in [BF+84]. They were used to address software

engineering modeling issues in [PA+82, SP88]. A review may be found in [CE87, BBT92].
Their strengths stem from their simplicity and readability. Their weaknesses come from a lack of
ability to extract and use all statistically significant trends and a tendency to include non-relevant
and non-significant information in the tree.

• Optimized Set Reduction (OSR), which has been developed at the University of Maryland
[-BBT92] in the framework of the TAME project I'BR88] and has already been applied to several
software engineering applications [BBT92, BBH92, BTH93]. It is partially based on both
machine learning principles [Q86, BF+84], and univariate statistics [Cap88]. Our motivation for
developing OSR, and a tool to support it, was to design a data analysis approach that matches, to
the extent possible, the specific needs of multivariate empirical modeling for software
engineering [BBT92]. OSR generates logical expressions which represent patterns in a data set.
For instance, consider the following example of a simple pattern (logical expression) related to
high fault concentration:

Example 1:
A compilation unit that imports numerous declarations from outside the subsystem in which it is
developed, that shows a large average statement nesting level and an intense use of global
variables is likely to generate fault reports during system and acceptance testing. The
corresponding logical expression characterizing this class of compilation units would be:
NONLOC_IMP = High ^ (NESTING = High ^ GLOBALS = High)

In this paper, we intend to show that OSR may be used as an alternative to logistic regression or
classification trees to generate empirical models of risk within a software system, and that it can yield
more accurate results. We will discuss issues related to the interpretation of the generated models, hn
particular, we will demonstrate how OSR can be useful in (1) identifying characteristics of high-risk
components in a large Ada system and (2) providing some understanding about how faults originate
during the software development process

In Section 2, we present an evolved version of the OSR algorithm (an earlier version of the OSR
approach was applied to project cost estimation and published in [BBT92]) which is intended to make
OSR models more accurate and easier to interpret. Specifically, the new algorithm improves the
interpretability and the accuracy of the models in three ways. First, it provides a mechanism for dealing
with the discretization of the explanatory variable ranges in an automated way. This better supports the
requirement that our models need to be able to handle the problem of heteroscedascity (see R5 in
[BBT92]) Secondly, we provide OSR with the ability to work with conjunctive predicates (which will
be called predicates in this paper), allowing our models to elicit the effects of combinations of variables
which were not visible in the previous version of OSR. Finally, we provide support for recognizing
similarities among patterns, which aids the user in model interpretation. These second and third
adaptations help OSR deal with the requirement that our models are able to handle interdependencies and
interactions among the explanatory variables (see R4 in [-BBT92]).

Also in contrast to [-BBT92], this paper applies the OSR modeling technique to the issue of classifying
Aria components as either low or high risk, as opposed to project cost estimation (prediction on a
continuous range). Accordingly, we use logistic regression and classification trees as a baseline for
evaluating the OSR results. (Preliminary and partial results of this research were presented in [BBH92]
based on the analysis of FORTRAN systems).
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In Section 3, we present a validation of the OSR process, which is based on constructing models using
data from a large Ada system developed at the NASA Goddard Space=_ight Center. In Section 3.2 we

compare the generated OSR models to both logistic regression and classification tree models with respect
to their accuracy. In Section 3.3, we discuss the interpretability of the OSR models. Finally, in Section
4, we outline the main conclusions of this paper and define the future directions of the research.

2 Optimized Set Reduction

Assume we want to assess a characteristic of an object. We will refer to this characteristic as the

dependent variable (Y). The object is represented by a set of explanatory (known or assessable)
variables (called Xs). These variables can be either discrete or continuous. Also, assume we have a

historical data set containing a set of experiences that contain the previously cited Xs plus an associated
actual Y value. Our goal will be to determine which subset of experiences from the historical data set
provides the best characterizations of the current object to be assessed.

Example 2: Assess the expected frequency of faults ('Y) that will be detected during system and
acceptance test within a particular compilation unit. For instance, the Xs may be: complexity
metrics, system architecture metrics or developer related evaluation of skills.

2.1 The OSR Process

First, we will introduce new terminology in an attempt to both formalize the intuitive concepts related to
empirical modeling and give those concepts a firm grounding in the OSR context. Subsection 2.1.1
presents the notions informally to provide the reader with some intuition about the method. The rest of
Section 2 will be more structured and formal in order to define more complex notions without
ambiguity. Whenever needed, definitions will be formal specifications whereas others will be in
algorithmic form.

2.1.1 Basic Definitions

Assume we have a historical data set consisting of n experiences, where each experience consists of a

value for a single dependent variable (Y) and a set of values corresponding to a set of m explanatory
variables (EV = {X1,X2 ..... Xm}). We define the term pattern vector to mean one of these such

experiences. Assume the dependent variable's value domain (dora(Y)) is divided into a set of disjoint
and exhaustive classes which can be either intervals (if the Y is continuous) or categories (if the Y is
discrete). Each explanatory variable has its own value domain (dom(Xi)) which, like domCY) is divided

into a set C of disjoint and exhaustive value classes C = {Classil, Classi2... Classik}. We define a
measurement vector to be a pattern vector without the dependent variable Y. (Note that a measurement
vector can be used to represent an object whose dependent variable value is not known, but is of interest

and which we wish to assess). The measurement vector value domain is MV = x dom(Xi).
i E 11 .. m)

Likewise, the pattern vector value domain (i.e., the domain of the vectors in the data set) can be

represented as PV = dora(Y) × MV. We define PVS _ PV to be a pattern vector set representing the
historical data set.

Example 3: Suppose (Size = 100 LOC's, Function_type = computation) is a measurement
vector characterizing a compilation unit Assuming Y is #faults, ( #faults = 6, Size = 100 LOC's,

Function_type = computation) is a pattern vector characterizing a particular testing experience on
a compilation unit.
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At the very heart of the OSR process, is what we call a singleton predicate. "We define a singleton
predicate to be a pair with the following form: (Xi ,Classij) meaning that explanatory variable Xi has a

value belonging to Classij _ dom(Xi). A singleton predicate (also written Xi _ Classij) is said to be

TRUE for a measurement vector if that vector's explanatory variable Xi value is an element of Classij,
otherwise, the singleton predicate is said to be FALSE for that vector.

Example 4: Size e [50, 200) is a singleton predicate

Now that we have defined the notion of a singleton predicate, we can define other elements of OSR
which are built upon this notion. For instance, we can define a conjunctive predicate (denoted Pred and
simply called a predicate from here on) as the conjunction of singleton predicates. We will consider a

predicate to be a set of singleton predicates, where the conjunction is implicit. A predicate is said to be
TRUE for a given measurement vector if each of its constituent singleton predicates is TRUE for that
vector. (Note that by defining a predicate to be a set (conjunction) of singleton predicates gives OSR the
ability to elicit some of the complex interdependencies that exist between the explanatory variables, see
requirement R4 in [BBT92]).

Example 5: Size e [50, 200) ^ Function_type e {computation} is a predicate

A predicate may be used to characterize sets of pattern vectors. For example, if we define
IS_TRUE(Pred, pv) to yield TRUE if Pred is a true logical expression for the pattern vector pv, (i.e.,
each singleton predicate in Pred is true for pv), then we can define a predicate Pred and a subset PSS of
the historical data set (PVS) such that IS_TRUE(Pred, pv) yields TRUE for each pv in PSS. Similarly,
we define SLTBSET(PSS, Pred) to denote a subset of PSS characterized by Pred. Also, we clef'me PSS
to be equivalent to SUBSETfPSS, TRUE). Finally, MEMBER(X, Pred) yields the value TRUE if the
variable X appears anywhere in Pred, FALSE otherwise.

2.1.2 Optimal Subsets of Experiences

In this section, we rigorously define the notion of "optimal subset of experiences" by defining the
function OPT that extracts these subsets from a given historical data set. We will see in the next section
that OPT is not directly implementable. Nonetheless, this definition should help the reader understand
our goals at a first glance. These definitions, by their very nature are somewhat terse. However, the

accompanying explanations should help the reader get an intuitive understanding of the process.

• Definition 1: Normalized Entropy H(PSS, Y)

This is the information theory definition of entropy that characterizes distributions, normalized to yield a
value between 0 and 1. This concept is commonly used in machine learning[MS3] in order to assess the
level of information provided by a distribution on a continuous or discrete range. It yields a value 0
when unambiguous information is provided and 1 when no information is provided.

H(PSS, Y) = - _ p(PSS,ClassYj)log,c,p(PSS, ClassYj)

ClassY, _ C

where,

. PSS is a set of pattern vectors

. ClassYj is a class def'med on dom(Y)

p(PSS, Yj) is the prior probability that a vector which is an element of PSS has a dependent

variable value belonging to the dependent variable class Yj
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• Definition 2: DIFFDIST(PSSi, PSSj, Y)

DIFFDIST(PSS i, PSSj, Y) = TRUE if the two sets of pattern vectors characterized by PSS i and PSSj
show a statistically significant DIFFerence in DISTribution on the dependent variable CY) range and is
FALSE otherwise. This function is based on binomial tests for proportions and is better described in
[BBT92]. The statistical level of significance used as a threshold between TRUE and FALSE is
subjective and is therefore defined by the user (e.g., 0.05, 0.1).

• Definition 3: VALID(PSS, mv)

This function yields TRUE if at least one predicate is TRUE for all the pattern vectors in PSS and for the
measurement vector inv.

PSS _ PVS A mv E MV ^ 3Pred such that (Vpv e PSS , IS_TRUE(Pred, pv) ^
IS_TRUE(Pred, mv) ) _ VALIDfPSS, mv)

•Definition 4: EMIN(PSS, PSSj, Y)

EMIN(PSS, PSSj, Y) = TRUE if PSSj, a subset of PSS, shows a significantly different distribution

from PSS on the Y range (based on a predefined level of significance and according the result of the

function DIFFDIST) and for all other subsets PSSk of PSS showing a statistically significant Y

distribution, H(PSSj, Y) -< H(PSSk, Y). EMIN stands for: Entropy is MINimum. In other words,

EMIN tells us if PSSj characterizes a subset with minimal possible entropy and that this low entropy is
not likely to be due to chance.

PSS c PVS ^ PSSj c PSS ^ (DIFFDIST(PSSj, PSS, Y) ^ (VPSSk c

DIFFDIST(PSSk, PSS, Y) A H(PSSj, Y) < H(PSSk, Y))) = EMIN(PSS, PSSj, Y)

PSS, k_j,

• Definition 5: OPT(PVS, mv, Y)

OPT yields a set of OPTimal subsets of pattern vectors of PVS (the historical data set) based on the

def'mitions presented above. These subsets are characterized by predicates which are built based upon
known information (i.e., mv) and show a minimal entropy. They can therefore be used for predicting
the value of Y with respect to my.

Example 6: In Figure 1, based upon a given measurement vector (my) and a given historical
dataset, the optimal subset extracted by OPT and characterized by the predicate on the left hand
side of Figure 1 indicates a strong probability for Y to lie in the interval Y2. This may be used
for predicting the class where the object described by mv is likely to lie. Also, if Y is defined on
a continuous scale, the optimal subset expected value may be used as a prediction.
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Figure 1: Classification with Extracted Subsets

Based on the primitives defined above, OPT may be def'med as follows:

OPT(PVS, mv, Y) = {PSS I PSS _ PVS A VALID(PSS, mv) ^ EMIN(PSS, PVS, Y) }

The function OPT as defined above defines optimal subsets of experiences with minimal entropies and
characterized by optimal predicates. However, this is just a first step in the definition of an optimal
search algorithm to extract datasets' patterns since there are several reasons why this simple function is
not fully adequate to build empirical modeIs to fulfill our needs. Some of these reasons are simply
computational in nature while others are related to the loss of useful information.

• 1: The number of possible singleton predicate combinations makes the execution time of the search

of optimal predicates prohibitive without a search strategy.

• 2: We are not only interested in the optimal subsets extracted by OPT but also by the predicates that
characterize them. We want each generated predicate to contain only singleton predicates that
have a significant impact on the resulting distribution entropy (see Figure 1). Thus, we can
minimize the information necessary to identify optimal subsets and make the predicates more
interpretable.

• 3: We need to extract information about the relative impact of the various singleton predicates
within the optimal predicates.

• 4: The conditions under which singleton predicates or predicates appear relevant have to be
determined.

Therefore, we will now def'me an algorithm which addresses these issues, discussing its relationship to
the function OPT. This is the Optimized Set Reduction process which can roughly be described by a
three step recursive algorithm where entropy is optimized in a stepwise manner.

2.2 The OSR Algorithm

The goal of the OSR algorithm is to produce a set of patterns which characterize the trends observable in
the historical data set while addressing the four modeling issues mentioned above. In this context, the

notion ofpanern is based upon the notion of predicate as defined above while addressing some of the

mentioned modeling needs. This definition of pattern intends to be both useful for predicting and
suitable to interpretation.
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In subsection 2.2.2, we shall describe the OSR algorithm in detail. However, before doing so, we need
to define a number of preliminary concepts that are used in the algorithm.

2.2.1 Preliminary Definitions

• Definition 6: OSR Pattern

As mentioned above, OSR generates patterns. A pattern is an ordered conjunction of predicates which
characterizes a subset of PVS that shows a minimal entropy distribution. The notion of ordering will be

represented by the "ORDERED AND" symbol ( A..,). It is logically equivalent to the symbol (A) with

the exception that predicates to the right of a 2 symbol are relevant only when all predicates to the left of

the symbol are already TRUE. The notion of order is introduced here to capture information about the
conditions under which a predicate is relevant and does not have any logical impact on the
characterization of optimal subsets We will call the ordered expression to the left of a given predicate in a
pattern the context of the predicate. This addresses issue number 4 mentioned above.

Example 7: Define two predicates

Predl = SUBSYSTEM e REAL-TIME CONTROL A SUBSYSTEM e LARGE

Pred2 = #GLOBAL VAR/ABLES e LARGE.

If we assume the pattern Predl _ Pred2 was generated by OSR, we can see that this pattern

characterizes a pattern vector set suggesting a high risk which is defined, in this particular
example, as the probability of detecting errors that are difficult to correct during the test phases
(see Figure 2).

This pattern (Predl _ Pred2) has a specific interpretation associated with it. Predj is a non-

singleton predicate and Pred2 is relevant within the context of Predl. This pattern implies the

following interpretation. If a subsystem is both large and real time, then it is significantly more
likely to be of high risk than a random subsystem. However, it does NOT suggest that either real
time subsystems or large subsystems independently increase the probability that a subsystem will
be of high risk. Also, within the context of large, real time subsystems, subsystems with a large
number of global variables have a significantly greater probability of being high risk than those

with a small number of global variables. However, this pattern does NOT suggest that a large
number of global variables has a significant impact on the probability that a subsystem will be of

high risk outside the context of large, real time subsystems. (More details concerning pattern
generation and interpretation will be presented later in the paper.)
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Figure 2: Classification Using Patterns

• Definition 7: DISCRETIZE(PSS, X i )

Given a particular subset of pattern vectors (PSS), we want to divide/cluster the ranges/categories of the
explanatory variables into an exhaustive and disjoint set of classes (Classil .-- Classik for the

explanatory variable Xi) based on a meaningful class creation techniques. This is used to both define

singleton predicates and to better satisfy the problem of heteroscedascity, i.e., requirement R5 of
[BBT92] which states that an explanatory variable may be a good predictor on a part of its range/value
domain while a mediocre predictor otherwise. Clustering of discrete categories can only be performed by
the user by defining taxonomies. Numerous techniques are available in the literatureto create intervals

on continuous / ordinal ranges (e.g., cluster analysis) [DG84]. However, none appear to have
satisfactory properties for our problem. Therefore, classes are created for continuous / ordinal

explanatory variables according to the procedure DISCRETIZE briefly presented below and described in
Appendix II.

DISCRETIZE(PSS, X i ) defines classes on the range of X i (a particular continuous or ordinal

explanatory variable) based on a pattern vector subset PSS. This algorithm has the following properties:

• Either all or some of the classes should show distributions on the Y range that are significantly
different than the distribution resulting from the union of those classes. If not, differentiating these
classes and creating new pattern vector subsets is meaningless.

• The algorithm handles monotonic and non-monotonic underlying distributions on the Y range.

•The algorithm is not oversensitive to the addition or deletion of few pattern vectors so stable
patterns are generated.

Our goal is to take into account the above constraints and to minimize the average entropy across the
created classes in order to have classes as homogeneous as possible with respect to the dependent
variable values of their pattern vectors. Figure 3 illustrates the output of the algorithm. We assume an

actual underlying and unknown non-monotonic probability density function and an observed sequence
of Y values on the explanatory variable X range. We also assume two classes (1, 2) are defined on the Y

value domain. Using the DISCRETIZE algorithm produces Boundaryi and Boundary2 in Figure 3,
which creates the corresponding set of three explanatory variable value classes across the X range.
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• Definition 8: GENERATE_SINGLETONS(PSS, mv)

Let PSS represent the considered pattern vector set and let my be a measurement vector. The classes

defined by DISCRETIZE for each explanatory variable Xi give us a set of singleton predicates: {Xi E

Classi 1..... Xi e Classik}. GENERATE_SINGLETONS(PSS, mv) generates the set of all singleton
predicates SP such that SP = {Predi I IS_TRUE(Predi, my)}.

• Definition 9: SIG_PREDICATE(PSS, Pred, Y)

The predicate Pred is said to be significant for the data set PSS if SUBSET(PSS, Pred) shows an
entropy lower than the one of PSS and if their distributions on the Y range show statistically significant
differences.

PSS _ PVS ^ (H(SUBSET(PSS, Pred), Y) < H(PSS, Y) ^

DIFFDIST(PSS, SUBSET(PSS, Pred), Y)) = SIG_PREDICATE('PSS, Pred, Y)

Example 8: Assuming two dependent variable classes ([low, high]), suppose Pred
characterizes a subset whose distribution across the two classes is [10, 7]. This subset shows an
entropy which is lower than the entropy of PSS, which had a distribution [100, 75], but the
difference is not statistically significant since the proportion of pattern vectors in each class is

practically the same. A binomial test for proportions [Cap88] is used to assess the significance of
the observed difference in entropy.

• Definition 10: MINIMAL(PSS, Predi, Y)

The predicate Pred i is said to be minimal for the pattern vector set PSS if it characterizes a subset of

PSS which shows a significantly different distribution across the Y classes and there exists no other

predicate Pred./=, Predi such that Predj characterizes a subset of PSS which shows a significantly

different distrilaution across the Y classes. Otherwise, Pred i contains more singleton predicates than is

necessary to significantly improve the entropy and is not considered to be minimal.

SIG_PREDICATE(PSS, Predi, Y) ^ (Vj, Predj = Pred i, j_i, (--,SIG_PREDICATE(PSS,Predj, Y) )
MINIMAL(PSS, Predi, Y)
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Example 9: Assume that the predicate Predl = SUBSYSTEM E REA_L-TIME CONTROL ^

SUBSYSTEM E LARGE yields, in a defined context, an entropy of 0.5 (assumed to yield a
significantly different distribution from the parent set). If Pred2 = SUBSYSTEM E REAL-
TIME CONTROL by itself yields an entropy of 0.5, Pred] is not minimal.

• Definition 11: VALID_PREDICATES(PSS, PREDc, SP, Y)

Let PSS represent a set of pattern vectors and PRED c be a set of predicates which define the context

characterizing PSS. Let SP be a set of singleton predicates and Y be the dependent variable.

Assuming that the set SP has been created by using GENERATE_SINGLETONS, we generate the set
of all predicates which are conjuncts of the singletons in SP and which are minimal with respect to PSS

(as defined above), as long as they do not use any explanatory variable X that appears in PRED c. These

predicates are called valid and are the ones that appear potentially useful for extracting subsets of PSS
with high predictive power for mv on the Y range. With respect to the implementation of this procedure,

the user may restrict the search space by fixing a maximum number of singleton predicates per predicate.
However, some complex but meaningful predicates may not be extracted by doing so.

VALID PREDICATES(PSS, PREDc, SP, Y) = {Pred i I MINIMAL(PSS, Predi, y) ^ Predi _ SP ^

(V j, Predj e PREDc, VX such that X E { Xk I Xk E EV ^ MEMBER(Xk, Predj) },
--,MEMBER(X, Predi) }

• Definition 12: EXTRACT_SUBSETS (PSS, PILED)

Let PRED be a set of predicates. A set of subsets, where each subset is characterized by one and only
one predicate in the set PRED, is extracted from PSS.

EXTRACT_SUBSETS (PSS, PILED) = {PSS i

2.2.2 The Algorithm

I Pred i e PRED ^ PSS i = SUBSET(PSS, Pred i )}

When the dependent variable's value domain is defined on a continuous scale, its range is assumed to be

divided into intervals / classes. These classes are fixed and will be used throughout the algorithm. These
intervals are usually defined according to two main criteria: the size of the data.set and the specific use of
the model. The larger the data set, the narrower the classes may be so that the model can produce a more
accurate response. Also, the def'mition of these classes must also take into account the future use of the

model, e.g., they represent clusters on the Y range or a finite number of situations suggesting alternativeactions.

Example 10:

Assume that therange of the dependent variable ('Y) _-an integer range from 0 to 5, indicating
the number of fault reports that were generated for a component during system and acceptance
test. Then, we may decide to define the following dependent variable classes:

ClassY1 = Y in [0, 1) Low Risk Components
ClassY2 = Y in [1, +*_) High Risk Components

Let PSS be a set of pattern vectors, let mv be a measurement vector characterizing the object to be
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classified on the Y range, and let PRED c be the set of predicates composing the pattern characterizing the

set PSS. Recall that we cannot use OPT directly. However, OSR(P_;S, my, PREDc, Y) heuristically

returns a set of "optimal" subsets using the algorithm defined below.

OSR(PSS, mv, PREDc, Y)

• Step 1: SP = GENERATE_SINGLETONS (PSS, my)

/* Generate a set of optimal singleton predicates based on the pattern vector set PSS */
/* and for the measurement vector mv */

• Step2: PRED = VALID_PREDICATES (PSS, PREDc, SP, Y)

/* Generate all the valid predicates based on the available set of singleton predicates */

/* SP, the current context defined by PRED c , and its corresponding pattern vector set PSS. */

• Step 3:

if PRED = _ /* no Predicates have been created at Step2 */

return PSS ;

else

{

/* A subset is extracted for each valid predicate created at step 2

/* OSR is called recursively for each of these extracted subsets

for all PSS i e EXTRACT_SUBSETS (PSS, PRED) do

(

/* the context of PSS i is now the context of PSS union Pred i */

PRED i = PRED c _ Pred i ;

/* call OSR for the subset PSS i */

OSR(PSS i, my, PREDi, Y) ;

}

*/

*/

Initially, call OSR(PVS, my, _, Y) where PVS is the historical data set.

The OSR algorithm can be viewed as a recursive function of OPT as described below. PVS is the

historical data set and mv the vector describing the object to be assessed. Let us assume we modify the
definition of the function VALID, which is used to build OPT, so that the function MINIMAL is

included in it. Then, VALID becomes the following:

PSS c PVS ^ mv • MV A 3pre_ such that (Vpv • PSS, IS_TRUE(Pred i , pv) ^ IS_TRUE(Pred i ,

mv) ^ MINIMAL(PSS, Pred i , Y) ) _ VALID(PSS, my, Y)

Then, assuming the def'mition of OPT uses this new definition of VALID, we can then define OSR in
the following way:

_m L.,I(OSR(PSS i, my, PRED c _3 Pred i, Y)), if OPT(PSS, mv, Y) _ 91
OSR(PSS, mv, PREDc, Y) = _ ,.o_m_. _

J[ {PSS}, otherwise.

Note that at each level of recursion, a minimal subset of pattern vectors is extracted. These recursively
nested, extracted subsets are each characterized by a predicate in a context. Thus, if we implicitly order
the paths, the ordered conjunction of predicates along each recursive path is a pattern (see Definition 6
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andFigure4).

The subsetsof PVSextractedby OSRfor aparticularmv maybeusedfor theclassificationof Y for my.
Also, if patterns are extracted for each my in PVS, the resulting set of patterns may be used for the
interpretation of the impact of the explanatory variables on the dependent variable in a particular
development environment. These issues will be addressed in the next sections.

Example 11

In figure 4, we can see how OSR patterns are generated during the subset extraction process. At
the fin'st (highest) level in the hierarchy, suppose <NUM IMPORTS = HIGH> is a predicate
which is minimal, causing the extraction of Subset I. At the second level, suppose the two place
predicate <NESTING=HIGH ^ CMPLX=HIGH> was found to be minimal. Then, by tracing
the hierarchy down this particular path, OSR generates the following pattern, which corresponds
to the extracted subset 1.1"

NUM_IMPORTS = HIGH --,^ (NESTING=HIGH ^ CMPLX=HIGH)

Also, each path in the hierarchy from the top set (PVS) to a bottom level subset is marked by its
own pattern. Thus, OSR creates a set of patterns, (i.e. all the paths in the hierarchy).

NUM_IMPORTS = Hi Historical

data set ('PVS)

NESTING = High
A

CMPLX = High

S ubsei 1 Subset2 S ubset3

Subsetl.l Subsetl.2 Subset2.2 _.2

Subsetl.l Subsetl.2 Subset2.1 Subset2.2

Q Extracted subset k "Subset of" relationship [

Figure 4: An Example of OSR Hierarchy

Each path of the hierarchy represents a path that the extraction process may have taken during OSR.
Accordingly, each path is characterized by an ordered conjunction of predicates, i.e., a pattern. Each
f'mal extracted subset (i.e., leaves of the hierarchy) forms a probability distribution across the dependent
variable range. This distribution is a valuable piece of information and can be used in several ways. For
instance, if the dependent variable is discrete, the dependent variable class containing the largest number
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of pattern vectors may be selected as the most likely class for the new object's Y value to lie in.

Alternatively, we may consider using a Bayesian approach. That is, we could define a loss/risk.function
[BBT92] and select the dependent variable class yielding the minimum expected loss. Finally, note that
several leaves may have distributions that yield contradictory or dissimilar trends. Therefore, several
pattern classifications (i.e., hierarchy leaves) are used to make a final global classification based on
predef'med decision rules. In order to perform such decisions effectively, we need to be able to evaluate
the accuracy of the identified patterns (e.g., hierarchy branches). This is the topic of the next subsection.

2.3 Assessing the Accuracy of Patterns

In order to generate patterns and assess their accuracy, we use OSR in the context of the technique called
V-fold Cross Validation ['BF+84]. For each pattern vectorpv in the historical data set, we can run the

OSR algorithm using PVS- [pvi}as the initial data set and using the measurement vector composing pv

as my. The pattern vectorpv is removed from the data set in order to avoid any bias in the results. Thus,
each time we run OSR, we know the actual value of the dependent variable we are trying to classify.
This allows us to not only extract specific patterns for each pattern vector in the data set, but we are also

able to classify each generated pattern as right or wrong at the time it is generated. The set of patterns
generated through this iterative process forms a representation of the trends observable on this particular
data set which we will call a Specific Pattern Set (SPS).

The SPS may be viewed as a hierarchical model (see figure 4) of the historical data set. Many of the
patterns in the SPS will be the same or similar and will therefore form classes of patterns. For each of
these classes, based on the SPS, we can evaluate statistics such as pattern reliability (i.e., percentage of
correct classification when the pattern is used) and pattern reliability significance (i.e., the probability
that the observed reliability is greater than or equal to the one expected through a random classification

by chance). These statistics can then be used to evaluate the pattern based predictions as explained in the
subsequent paragraphs. Thus, even though incomplete / partial information is available in the historical
data set, accurate patterns may still be generated in some cases.

Recall that we assumed the patterns generated by OSR have the following ordered conjunctive normal
form:

Predicatel ^ Predicate2 A ^ PredicateN
-4 -..4. H. --4

ALso, recall the order in which the predicates appear is relevant in order to determine the contexts where

they axe relevant. A predicate is relevant only when the conditions defined by its preceding / parent
predicates (i.e., the context of a predicate) are true.

Let ClassYi be dependent variable class i. Let T be the number of generated pattern instances Panernj
that predict ClassYi. Let C be the number of pattern instances which correctly predict ClassYi (based on

the actual Y value of the pattern vector for which the pattern was produced).

Then we define the reliability of Patternj with respect to the dependent variable class ClassYi as:

R [ClassYi ; Pattern j] = C / T

The probability that a pattern appears T times yielding a particular classification ClassYi C times
correctly by chance (P(C,T,p)) can be expressed by the binomial distribution:

T [ c, 1 _r-c
P(C'T'P)= C !(_S..c)!P [,-P)
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where, p = p(ClassYi), i.e., the prior probability that the value of the dependent variable is in ClassYi.

K the pattern reliability R is equal to 1.0, then the binomial equation can be simplified and the level of

sig.nificance is simply pX. If R is below one, then the pattern reliability significance RS can be calculated
using the following formula:

RS =
T-C

ZP(C + j;T;p)
j=0

Example 12: For a given pattern, suppose that:

C = 10 (the number of times that the pattern was correct during the
V-fold Cross Validation)

T = 12 (the total number of times the pattern was generated)

Also, suppose that there are exactly two dependent variables classes and an uniform distribution

in the historical data set, so that the prior probability of a pattern predicting each class is 0.5 for
each dependent variable class.

Then, using the above formulas, this pattern has the following reliability and reliability
significance.

R = 0.83

RS = 0.019

Since we are able to differentiate significantly reliable patterns from the non-significant and/or unreliable

ones, we are able to know the reliability of a classification when we make it. That is, when we are trying
to assess a new object, we run the OSR algorithm using that object as the measurement vector. This
process extracts a set of patterns specific to that object. Then, when making a classification for this

object, we know that a classification based on a reliable pattern with a sufficient level of significance
(e.g., RS < 0.05) is believable, whereas, one based on a reliable pattern with a poor level of significance
is not.

Thus, our decision process is based on the R's and RS's of each pattern in the hierarchy. Pattern
reliability is used for classification while the variations in pattern entropy are used for interpretation.

Although a reliable pattern always shows a low entropy, the opposite is not true (for reasons beyond the
scope of this paper).

Note: a poor reliability means that a pattern is not robust to "noise" (i.e., the dependent variable
variations created by non-measured phenomena). A poor reliability significance may mean that the
pattern is a result of noise or more complex phenomena resulting from the OSR process (again beyond
the scope of this paper.

2.4 Support for Interpreting Patterns

As we have seen patterns are useful for classifying variables of interest. However, more importanOy,
they are also useful in providing understandable / interpretable models. Patterns are much easier to
interpret than regression coefficients. First of all, OSR takes into account interactions between

explanatory variables, i.e., the fact that an explanatory variable can have a strong impact in a certain
context and not be relevant in another one. These interactions do not have to be known before building
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the model as opposed to interaction terms in logistic regression [HL89]. Secondly, as we will see, a

process (described below) can be defined to show strong associations that exist in a given context (this
is needed to satisfy R4 of [BBT92]). Finally, the variation in entropy generated by a particular predicate
can help assess the significance of the impact of an explanatory variable (on the dependent variable)
within a certain context. However, interpreting the raw patterns would force the user to deal with useless

complexity. Many of these patterns are similar and should not be differentiated. This can prevent the
user from getting a clear picture of the model trends. Therefore, the patterns generated by the OSR
process need to be grouped in order to make them more easily understandable and interpretable. This can
be done using a formally defined statistical process (described below) where the user fixes the desired
level of "similarity" between pattern by assigning values to a small set of parameters.

Let us define two patterns PT1 and PT2:

PTI: Predi _.^Predj

PT2: Predi ^ Predk

Suppose in the context where Predi is true, the pattern vector subset for which Predj is true happens to
show a strong association with the one for which Predk is true. This implies that these predicates

capture basically the same phenomenon. The strength of the association can be assessed by using
normalized Chi-squared based statistic such as Pearson's Phi [CA88]. A Chi-squared test can be
performed to assess the statistical level of significance of such an association. The two patterns will be
merged into one signifying that the selection of one predicate, or the other, during the OSR process,
occurred randomly. This is a result of slight differences between the two predicates and therefore
distinguishing between them does not help in the understanding of the object of study. This
phenomenon is mainly due to complex interdependencies between Xs that are often underlying the
software engineering data sets.

In order to decide whether or not two strongly associated predicates should not be differentiated, the

user declares a Phi value which represents the minimal degree of association necessary to assume two
predicates as similar. This process of merging patterns based on the similar predicates principle yields

the resulting pattern PT{ 1,2} which contains the composite predicate (Predj v Predk) implicitly
meaning that its two component predicates are interchangeable in this context.

PT{ 1,2}: Predi 2 (Predj v Predt0

Let us define a composite predicate to simply be a disjunction of predicates.

Examplell: Assume that in

most of the components with a
volume V. PT1 and PT2 will

position predicates (who are in
the user.

the context of a subsystem that has for focus data processing,
large number of SLOCs are also the ones with a large Halstead's
be merged if the level of association between the two second

this case singletons) is higher than the "Phi" threshold defined by

PTI: SUBSYSTEM E

PT2: SUBSYSTEM E

PT{ 1,2}: SUBSYSTEM

REAL-TIME CONTROL A V E LARGE, R = 0.90, RS = 0.06

REAL-TIME CONTROL A SLOC E LARGE, R = 0.92, RS = 0.07
,=.)

REAL-TIME CONTROL A (V (_ LARGE v SLOC E LARGE)
4.,4
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R = 0.91, RS = 0.01

In this situation where PT1 and PT2 are both reliable but show a small number of occurrences in
the specific pattern set (see previous section), then they will be associated with weak levels of

significance (RS). Merging them will increase this level of significance and keep the reliability
('R) constant if the used Phi threshold is high enough.

Automated merging of similar patterns can be performed if the user provides either a Phi value or a level
of significance that corresponds to an unambiguous def'mition ofpanern similarity.

In a similar manner, we can define a second merging principle. Suppose we have the same two patterns
as defined above:

PTI: Predi ..,^Predj

PT2: Predi ^ Predk

However, this time suppose that Predj is the singleton predicate X1 e Classkm and Predk is the

singleton predicate X1 e Classkn where ClasSkm is a neighbor class of Classkn (their boundaries may
overlap). In this particular case, if the two patterns characterize subsets with no statistically significant
difference in distribution on the dependent variable range, then they can be merged. This is because the
variation from one class to the other seems to have a non-relevant effect on the dependent variable under

the context where Predi is true. Therefore, in order to assess i.f merging is possible, the probability that
differences between distributions are random is calculated. For each dependent variable class, the

proportions of pattern vectors are compared between the two distributions by calculating the probability
that difference in proportion is due to randomness. If for all dependent variable classes, the resulting
minimum probability is above a user-defined critical probability value, we accept the hypothesis that
there is no significant difference between the two distributions. In the tool developed to support the OSR
approach, this is calculated through a binomial test for proportions.

Exarnplel2: Assume that in the context of components with a large number of SLOCs and a

large Halstead's volume V, the programmers experience of the programming language (ordinal

factor on a scale 1-5) is a significant factor. Both PTI and PT2 show a first position predicate
which is the result of a previous merging according to the fh-st principle presented above. Their

second position predicate is similar but not identical. PT1 and PT2 will be merged into PT{ 1,2}
if the level of similarity between the two second position predicates (who are in this case
singletons) is higher than the threshold defined by the user.

PTI" (V e LARGE v SLOC e LARGE) .-,^EXPERIENCE e [1,2)

trF2: ('VeLARGE v SLOC e LARGE) .-,^EXPERIENCE e [2,3)

PT{1,2}: (V e LARGE v SLOC e LARGE) _ EXPERIENCE e [1,3)

Both of the merging principles defined above can be used simultaneously in order to obtain more
significant and interpretable patterns. However, the merging process using both of them must be

carefully defined. We have built a prototype tool where such mechanisms have been completely
automated. A more precise definition of the pattern merging algorithm is presented in Appendix II.
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3 Validating the Approach

In order to validate the OSR approach, we need to compare it to standard modeling processes that can be
used for classification: logistic regression [HL89], classification trees [$92].

Our definition of a high risk component (procedure or function) is: any software component where

errors were detected during system and acceptance test. Low risk is used to identify the remaining
components of the system. In particular, we wish to build models that identify high risk components for
a particular category of errors: ones that characterize an incorrect reading or writing in a variable or a data
structure.

3.1 Data Description

The data set was created using data collected from 146 components of a 260 KLOC Ada system. We
selected randomly an equal number of both low and high risk components in the used data set. This was

done in order to construct unbiased classification models. We selected all the high risk components
identified during test phases and we randomly introduced an equivalent number of low risk components
among those available. A larger number of low risk components in the data would lead all modeling
techniques to generate models more accurate for the low risk class and would therefore provide mediocre

models for the high risk class (i.e., their results would not be representative of the actual capability of
the models in terms of accurately identifying high risk components).

The explanatory variables used to construct the models are static code and design metrics. Some of these

metrics are taken from a project whose goals were to build multi-variate models of software quality
based on architectural characteristics of Ada designs [AES90,AE92,AE+92]. Others are well known
component level complexity and size measures[BP84]. We will first summarize the architectural

approach to measurement taken in this project and then define the assumptions upon which the analysis
was conducted.

The architectural view of the Ada system can be derived by identifying the major components of the
system, and determining the relationships among them. The library unit aggregation (LUA), or the
library unit and all its descendant secondary units [AES90], provides an interesting concept for an Ada
system. Relationships between LUAs can include the importing relationship, or the relationship between
an instandation and its generic template. The increased use of Ada as a design as well as implementation
language provides an opportunity to better assess the final product in its intermediate stages. Since the
design and the f'mal product are written in the same language we can use tools developed for analysis of
Aria source code to provide an automated means for analyzing Ada designs. This automation is essential
if one is to frequently measure and assess the design.

The metrics used in this study are derived from the architecture of the system, and were obtained by an
automated static analysis of the source code using the ASAP static analysis program [Dou87], UNIX
utilities, and the SAS statistical analysis system. At the heart of the measures are counts of declarations

in an LUA - whether they are declarations made in the LUA, declarations imported to the LUA (i.e.,
declarations made in another LUA made visible by a "with" clause), declarations exported by the LUA
(i.e., declarations made in the library unit, and visible to other units that import the LUA), or
declarations hidden from these importing units (i.e., declarations made in the body and subunits).

The collection of metrics were developed from hypotheses about the nature of the software design
process and further details can be found in [AES90,AE92,AE+92]. These, in addition to other raw

measures extracted from the source code were used in this study. The metrics include ratios designed to
indicate the extent of context coupling, visibility control, locality of imports, and parametrization. These
characteristics are based on the following underlying assumptions:

10014023L 2-19



• Assumption 1 (Context coupling): Importing and/or exporting large amtunt of declarations may
require complex interfacing with the other LUA's of the system and is expected to be an error-
prone factor.

• Assumption 2 (Parametrization): The average number of parameters per program unit
declaration in the LUA should have an impact on the probability of generating defects. The larger
the parametrization of the LUA, the larger the number of abstractions to be dealt with, the greater
the difficultly for a designer or a programmer to keep in memory their respective role, the more
complex it becomes to handle interaction with others LUA's.

• Assumption 3 (Visibility control): The ratio of cascaded imports (declaration imports to a unit
and whose visibility cascades to it's descendent units[AE+92]) to direct imports in the LUA.
This concept captures the extent to which declarations are imported to where they are needed in
the LUA. The larger the number of visible declarations unrelated to the problem addressed at a

particular location in the LUA, the larger the risk of confusion or misunderstanding of those
program abstractions.

• Assumption 4 (Reuse): A high ratio of reused code in a LUA denotes the familiarity /
understanding with the problem addressed and the computer-based solution, i.e., the LUA

interface with other LUA's, its component interfaces and its data structures. This is expected to
lower the probability of defect.

In addition to the architectural metrics mentioned above, two main categories of component complexity
metrics may be identified as well: size of the component and the structural or control flow complexity of
the component.

• Assumption 5 (component size): Different measures of size were used: the total number of Ada
statements, the number of executable Ada statements and the number of source lines of code.

Size measures have shown ha the literature to be related to the probability of generating defects
[SP88, MK92].

• Assumption 6 (structural complexity): The structural complexity of the code should affect the

probability of generating complex defects undetected during early walkthroughs and unit test.

3.2 Evaluating the Accuracy of the Models

We compare the results obtained using logistic regression and classification trees with those found using
Optimized Set Reduction. The fully automated OSR process was used to generate the set of patterns
partially presented ha Section 3.3. For each modeling approach, a V-fold cross validation procedure was
used [BF+84]. Each pattern vector was successively removed from the dataset. The model was built

using the remainder of the dataset and then used to predict the pattern vector extracted. The prediction is
compared to the actual and this is repeated for each pattern vector in the dataset. Unless the available
dataset is large, this validation method is preferable: this is an objective validation method (i.e., no
arbitrarily selection of test sample) that allow model evaluations with a maximum number of
observations.

The variable selection process used for building the regression models was a stepwise selection process
with a predetermined selection criterion of p = 0.05. Dummy variables [DG84] were created in order to
deal with discrete explanatory variables. Principal components [DG84, HL 89, MK92] have been

extracted and used in an attempt to optimize the accuracy of the regression models. Two regression
models were built. The first one is based exclusively on the original explanatory variables. The second
one uses, as explanatory variables, the generated principal components which are linear functions of the
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original explanatory variables, where each is orthogonal with respect to the 6thers. With respect to
classification trees, the algorithm provided by the S-PLUS system [$92] was used and the parameters
controlling the tree construction were tuned in order to get optimal accuracies. However, this process
was quite tedious since no guideline or rational exists for tuning these parameters despite the great
instability of the generated trees.

When comparing modeling techniques with respect to identifying high risk components, two different
evaluation parameters must be considered simultaneously. Assume that when a high risk component is
identified, a remedial action is taken during the testing phase (e.g., more expensive and more effective

code reading technique) and that the benefit of this remedial action is validated and quantifiable. We have
to consider the completeness of the model (i.e., the percentage of high risk components identified by the
model. The benefit of this remedial action on the development process quality will be a function of
completeness since the larger the number of high risk components identified, the higher the error

detection rate. Also, the correctness of the model (i.e., the percentage of components identified as high
risk that are actually of high risk) allows the user to quantify the waste of resources due to the
unnecessary applications of remedial actions.

Table 1 shows these two parameters for logistic regression, classification trees and Optimized Set
Reduction. OSR appears to be more accurate than both logistic regression and classification trees with
respect to all the criteria considered. We conclude that the benefits of the remedial actions taken when

identifying high risk components are increased using OSR. These results seems to indicate an
improvement of the OSR algorithm when compared with the earlier version presented in [BBH92]
where there was no significant accuracy differences when compared with logistic regression.

The results shown in Table 1 have been obtained following the classification rules below:

• Logistic regression: if the calculated probability of a component belonging to the high risk class
was below 0.5, the low risk class was selected. Otherwise, the high risk class was selected.

• Classification trees: The risk class was selected based upon the proportion of non-faulty and faulty
components in the matching tree leaf.

• OSR: For a given component, all the significantly reliable extracted patterns were considered for
performing the classification. If those patterns all showed a high probability in the same risk class,
then that class was selected. Otherwise, the risk class characterized by the pattern subset with the
highest average pattern reliability was selected. If none of the extracted patterns happened to have a
reliability significantly different from the random expected reliability, then the component was
considered undetermined and thus classified randomly among the two risk classes.

By selecting biased classification rules (e.g., 0.4 decision boundary for logistic regression), the model
completeness and correctness could be modified. However, when completeness increases, correctness
decreases and vice-versa. The best correctness / completeness tradeoff depends on the particular
application of the model. The results below were obtained using unbiased classification rules.

Model

Optimiz_ Set Reduction
Classification trees

Logistic regression without

Principal components

Logistic regression with

Principal components

Correctness Completeness

92.11% (70/76) 95.89% (70/73)

83.33% (60/ 72) 82.19% (60/73)

76.56% (49 / 64)

80.00% (52 / 65)

67.12% (49 / 73)

71.23% (52/73)
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Table 1: Model Accuracies

3.3 OSR Patterns' Interpretations

Comparison between the interpretability of logistic regression equations and OSR patterns may be found
in [BTH93]. Issues associated with classification tree interpretation are discussed in [BBT92]. In this

section, we illustrate and evaluate the interpretability of OSR patterns. Some of the patterns
characterizing "data value / structure" errors will be described in order to illustrate the interpretation
process in the OSR context. Patterns will be presented in a format facilitating their readability. Class
boundaries will not be shown since they are not meaningful to the reader. Instead their corresponding
quantiles on the explanatory variable range (in the appropriate context) will be used to describe
predicates.

3.3.1 Regression Equation

The regression equation generated is as follows:

LOgIl_-_Ppl= 0.337 + 0.0103 SLOC-0.00107 LUADA-1.8274 LUFREUC

where p = Prob(component is high risk))

One of the main problems of logistic regression models with respect to their interpretation is the inherent
instability of regression coefficients when the underlying assumptions of the model are not met (see
[BTH93] for example and details). In some cases, looking at the correlation matrix may help avoid the
problem when interpreting. Another related problem is that many good predictors were not selected by
the stepwise selection process because of a strong correlation with already included parameters. In order
to interpret the regression equations, the user has to look carefully at the correlation matrix and the

regression equation in order to have some meaningful insight into the associations between explanatory
variables and the dependent variable. Instability may be due to other causes like overinfluential data
points (outliers) or interactions between explanatory variables [DG84, HL89].

We will demonstrate in the next paragraphs that, on our dataset, logistic regression does not extract a lot
of the information which is provided by the data set. Some of the assumptions made in 3.2.2 will be
supported by the OSR patterns.

3.3.2 Patterns for Data Value / Structure Errors

The patterns listed below are the ones that seemed to conf'u'm the assumptions stated in section 3.1. Our
goal was not to make assumptions based on the generated patterns since this is a risky and dangerous
approach to data analysis, i.e., exploratory data analysis. As a matter of fact, many of the generated
patterns were not clearly understandable to us and did not fit in our list of assumptions. Generating
interpretable patterns does not imply generating easy to understand patterns, which is due to the indirect
and complex nature of some of the statistically significant associations extracted from our data sets.
Moreover, since statistical models do not deal with causality, interpretation becomes an even more
sensitive process.

Patterns are grouped according to the assumption they support. For each pattern presented, the entropy
associated with each predicate (here singleton predicates) is shown just below the predicate itself.
Patterns were generated entirely automatically without human intervention. As opposed to the
classification tree approach [$92], no "tuning" of the algorithm was necessary since the parameters of
the OSR algorithm are all intituively meaningful (e.g., user set statistical levels of significance for
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differentiating distributions) and can be set at once. The predicates' value intervals have been calculated

automatically according to the procedure described in Section 2.2.1. This approach for handling
predicate intervals automatically and dynamically (classes change in various contexts) gives more
meaning to the interpretation of the OSR patterns. The first group of patterns is commented in detail in

order to remind the reader about how to read these patterns. A definition of the metrics appearing in the
patterns presented below is provided in Appendix I.

• Pattern Group 1: Complex code within a largely reused LUA (Assumptions 4 and 6)

NDMAX _ [52% - 100%] A LUFREUS _ [0% - 71%] _ High Risk

H = 0.89 H = 0.73

NDMAX _ [52% - 100%] --)ALUFREUC _ [0% - 81%] _ High Risk
H = 0.89 H = 0.75

Picking those components with a relatively small amount of reuse within the subset whose maximum
statement nesting level is high implies a high probability that the component will be in the hieh risk class
(i.e., to generate errors).

The individual impact of predicates (here all singletons) on the risk (i.e., probability to be in the high
risk class) can be quantified by looking at the entropy variation they generate. NDMAX _ [52% -
100%] creates a variation of entropy of 0.11 (from 1.0, the initial set entropy, to 0.89). In this context,
a variation of entropy of 0.16 can be observed for LUFREUS e [0% - 71%] (from 0.89 to 0.73).
However, there is no strong evidence that the amount of reuse in a LUA is a high risk characteristic

when NDMAX _ [52% - 100%] . In other words, this pattern group seems to indicate that

architectural reuse pays off in terms of defect probability only in the context of complex components.

• Pattern Group 2: Large compilation units within a LUA with a high level of parametrization
(Assumptions 2 and 6 ).

( SLOC E [57% - 100%] v V E [54% - 100%] ) _A LUPARPD E [53% - 100%] :=) High Risk

H = 0.84 H = 0.46

LLTPARPD is an indicator of the average program unit interface complexity within a particular LUA.
This complexity seems even more difficult to handle for large components (i.e., large number of lines of

code, operands and operators). Based on the process defined in section 2.4, the reliability of this pattern
has been assessed at 100% and appears to be significant at RS = 0.06. Since this data set is small,
relatively few patterns show significances below 0.1. Here again, there is no strong evidence that
LUPARPD is a high risk characteristic in the context of small components. Large components with
complex interfaces are risky while small components do not seem to be strongly affected.

• Pattern Group 3: Large and complex compilation units within a LUA containing high quantities of
cascaded imports (Assumptions 3, 5 and 6).

( SLOC _ [57% - 100%] v V E [54% - 100%] ) .-,A LUACTMAX E [64% - 100%] =:_ High Risk

H = 0.84 H = 0.0

NDAVE [65%- 100%] -..)ALUCMIMP E [36% - 100%] _ High Risk

H = 0.92 H = 0.0

Importing large quantities of cascaded declarations seems to significantly increase the risk of defects

even in the context of large and/or complex components, i.e., large number of lines of code, operands
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and operators. Once again, small components do not seem to be affected.

In this pattern, the first predicate is an example of composite predicate and is the result of the merging
process. Phi (i.e., the merging criterion) was f_xed to 0.7.

• Pattern Group 4: Complex compilation units in the context of a LUA that exports/imports large
quantities of declarations towards other LUA's (Assumption 1, 5 and 6 ).

LU'WBYCU E [79% - 100%] ^ DOBJ E [46% - 100%] _ High Risk

H = 0.78 H.= 0.34

LUWBYCU _ [79% - 100%] A VG _ [26% - 100%] _ High Risk

H = 0.78 H = 0.44

LUCC E [93%- 100%] _ High Risk
H = 0.0

This pattern group seems to indicate that interfacing with other compilation units in order to export
complex compilation unit (i.e., large number of declared / defined variables or a large cyclomatic

complexity) shows a high defect risk. These patterns illustrates how the notion of context can play an
important role when determining the impact of an explanatory variable. This shows that when one wants

to validate assumptions, the answer may not be as simple as yes or no. In our particular example, most
of the assumptions would not have been validated by simply looking at the regression model [CAP88].

• Pattern Group 5: When average statement nesting level is high, the "size" of the component is large
and this component has an ALgorithmic / COMPutational functionality (according to the NASA SEL
taxonomy), then there is a high probability that the component is high risk. Note that this is an example
of the use of non-singleton predicates.

NDAV E [65% - 100%]

H = 0.92

A ( ALCOMP YES A ( SLOC _ [15% - 100%] v V _ [19% - 100%] v

TOTASTMT _ [23% - 100%]) )
H = 0.75

4 Conclusions

Five main conclusions can be drawn from this paper:

(1) Based on a rather small and incomplete data set, i.e., i46 Ada components, a completeness and a
correctness above 90% has been obtained by using the OSR modeling process. If this level of
accuracy is not sufficient, the user can tune the decisions boundary so he may increase either the
correcmess or completeness according to her/his specific needs.

(2) OSR Patterns appear to be more stable and interpretable structures than regression equations
when the theoreucal underlying assumptions are not met. Taking effective corrective actions is only
possible when the impact of controllable factors on the parameters to be controlled (e.g., cost,
quality) can be fully understood and quantified.

(3) OSR Patterns seem to generate a more complete set of information, i.e., validate more
assumptions, than the logistic regression equation. This may be partially corrected by looking at the
explanatory variable correlation matrix. However, this is an extremely tedious and not always

10014023L 2-24



helpful task, e.g., issues like interactions between explanatory variables are s].ill not addressed.

(4) OSR classifications were found to be more accurate than logistic regression equations. This also
conf'trms previous studies showing similar results for other kinds of applications [BBT9"_ BTH931

Therefore, the Optimized Set Reduction approach seems to be a good/afternative and/or complemeni
to multivariate logistic regression in this application domain.

(5) OSR classifications were found to be more accurate than a classification tree. This also confirms
earlier results we obtained on the datasets used in [BTH93] where classification trees were

performing poorer than both logistic regression and OSR. These results seem to suggest that the
classification tree structure, even though simple to generate and use, might be too simplistic for
modeling complex artifacts such as high risk components.

From a more general perspective, the OSR approach is a data analysis framework that successfully
integrates statistical and machine learning approaches in empirical modeling with respect to specific
software engineering needs: it provides support for dealing with both partial information, model
interpretation and is not based on a severely constraining set of hypotheses.
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Appendix I: Definitions of the metrics appearing in the paper

Library Unit Aggregation (LUA) metrics:

• LUACTMAX: total number of cascaded program unit declarations / maximum possible number of
cascaded program unit declarations

• LUCMIMP: cascaded imported program unit declarations / direct imported program unit
declarations

• LUWBYLU: number of library unit aggregations that contain a with statement to this compilation
unit

• LUWBYCU: number of compilation units that contain a with statement to this compilation unit

. LUPARPD: number of parameters per program unit declaration in the LUA

• LUFREUC: fraction of old (mused verbatim) number of components in the LUA

• LUFREUS: fraction of old (reused verbatim) number of SLOC's in the LUA

• LUADA: number of Ada statements in the LUA

• LUCC: unique Imported declarations / unique exported declarations

Compilation unit metrics:

NDMAX: maximum statement nesting level

NDAV: average statement nesting level

SLOC: source lines of code

V: Halstead's volume

VG: cyclomatic complexity

DOBJ: number of declared variables
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Appendix II: Algorithms

The Merging Algorithm

This merging process can be formalized using the following def'mitions and algorithms:

Recall the definition of predicate and composite predicate from section 2.1.1 and 2.4. Let cp represent a
composite predicate. Then, we def'me:

• Definition AI: A context (C) is an ordered conjunction of composite predicates that defines a
subset of pattern vectors PSS (i.e., PSS = SUBSET(PVS, C)).

C

• Definition A2: An association coefficient a_j is an assigned statistical degree of association

between cpi and cpj in a data set PSS = SUBSET(PVS, C). Let PSSi = SUBSET(PSS, cpi) and let
PSSj = SUBSET(PSS, cpj).

A two row-two column contingency table is defined as shown in Figure 5.

PSSj
i ii

PSS -PSSj

PSS i

PSS-PSS i

PSS i A PSSj [

ii

](PSS-PSS i) A PSSj[

PSS i A (PSS-PSSj)

i

(PSS-PS S i ) m

(PSS-PSSj)

Figure 5: Predicate Association

Based on this table, a Chi-Square based statistic (Pearson's Phi), the degree of association between cpi

and cpj in PSS is calculated and assigned to a c . Note that this association coefficient is calculated in the

context of C (i.e., PSS = SUBSET(PVS, C)) and therefore is only valid under C.

• Definition A3: An association matrix A,C= is a square matrix of association coefficients calculated

under a context C, where the rows / columns are marked by composite predicates.

g21RIIlI_: AC_ contains all a c, i,j e { 1..... n }

C
• Definition A4: Two composite predicates cpi and cpj are said to be similar in the context of C if a_j
-> PHI (the minimal level of association defined by the user).This association will be denoted as
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cp_ ,- cpj.

• Definition A5: A predicate tree is a tree representation of the patterns generated when extracting the
specific .pattern set (SPS) process. As mentioned is Section 2.4, the SPS is a set of patterns
represenung the observed trends in the historical data set. It is expected that a significant number of

these patterns will be duplicated or similar. This representation is a compact way of representing the
SPS. Each path of a predicate tree represent a pattern (see Figure 6)

SPECIFIC PATTERN SET

x Ct s ] AND X23 2X4e Class AND X c=Class 3

X i e Class 11 AND X_ eClass 2X4e Class AND X e:Class 2

X 1 e Classl X 3e Class2

X 2 e Class 3

X5 _ Class 2

Figure 6: Predicate Tree

Note that in the above example, all of the predicates are singleton. This could represent a predicate tree
which summarizes an OSR run. During the merging process, branches will be merged and composite
predicates created at the nodes.

• Definition A6: Two composite predicates cpi, cpj are said to be "mergable neighboring composite
predicates" if the following conditions are fulfilled:

(1) There exist two predicates Predm and Predn, where Predm = (Xi e classik) and Predn = (Xi e

Classit ) (both are singleton predicates) such that Predm and Predn are each disjuncts in cpi and cpj,
respectively.

(2) Classik and Classit are neighboring (or overlapping) classes on variable Xi domain.

(3) cpi and cpj yield similar distributions on the dependent variable range. (i.e., the level of

significance of the two distributions being different is above S (user defined)).

If these three conditions are true, then MNCP(cpi, cpj, S) is TRUE.

We can now def'me the merging algorithm as follows:
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procedure MERGE (predicate tree, node, context, PHI, S)

(I) If (node is a terminal node of the predicate tree)
then RETURN

(2) while (B cpl, cpj such that MNCP (cpl , cpj, S)) do

UNION(predicate tree, node, cpi , cpj)

(3) Calculate z c°ntext
_mXm

(4) while (3 cpl, cpj such that cPi - cpj) do

aCOntext
select cpi and cpj such that i,j is the strongest association in h c°ntex_

UNION(predicate tree, node, cPi , cpj)

recalculate A c°ntextm-I x m-l, the association matrix for

cPl ..... cPi-l' cPi+l ..... cpj-l, cpj+l ..... cPm, CPiu j in context.

(5) for each successor of node in predicate tree

MERGE (predicate tree, successor, context A
__ CPnode, PHI, S)

end MERGE

In step (4), a call is made to procedure UNION which is defined as follows:

procedure UNION (predicate tree, NODE, cPi, cpj)

(I) Form a new node marked by the composite predicate cPi U cpj (i.e., cPiUj )
(2) Delete nodes marked by cPi and cpj under NODE

(3) Combine all like subpaths rooted at CPiuj

end UNION

The merging proce_ is initiated wi_ _e procedure call:

MERGE(predicate tree, root, _, PHI, S)
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Discretization Algorithm

Procedure parameter definitions:

• EV: the explanatory variable whose range is going to be discretized
• DV: the dependent variable of the model to be built

. dataset: set of pattern vectors to be discretized along the scale of variable
• criterion: maximum level of significance accepted to recognize two distributions as different

• classes: the definiton of the intervals (classes) on variable's range, i.e., a set of pairs of boundaries

procedure DISCRETIZATION (dataset, EV, DV, criterion, classes)

(i) sort dataset elements in increasing order according to elements'variable
values

(2) OPTIMAL_SPLIT(dataset, EV, DV, criterion, optimal_bound)

(3) if(dataset has actually been split in (2))

them (

(3.1) update the definition of classes with newly calculated
optimal bound

(3.2) extract two subsets ssetl, sset2 of dataset where

variable < optimal bound and variable > optimal_bound,
respectively

(3.3) DISCRETIZATION (ssetl, EV, DV, criterion, classes)

(3.4) DISCRETIZATION (ssetl, EV, DV, criterion, classes)

end DISCRETIZATION

The procedure for splitting datasets may be defined as follows:

procedure OPTIMAL_SPLIT (dataset, EV, DV, criteria, optimal_bound)

for all data vectors V i in dataset (in sorted order)

(

Case l: there is a change in DV value but not in EV value

( homogeneous = FALSE )

Case 2: there is a change in EV value (from EVVI to EW2) and while EV

values remained constant and equal to EWl, homogeneous remained equal to
TRUE

(
/*

STEP1: calculate entropy of the distribution on the DV range for the

dataset subset lying in the interval strictly below EVV2 (SSET2)

STEP2: Calculate the level of significance of the difference in

distribution between dataset and EEET2.

STEP3: If the the level of significance is below criterion and the

entropy is below the minimal entropy calculated so far, then
optimal_bound is assigned with EVV2

*/

Entropy2 = H(SSET2, DV)
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s2 = DIFFDIST(dataset, SSET2, DV)

If(Entropy2 < H(dataset, DV) and s2 < criterion)
them optimal_bound = EVV2

CaBo 3_ there is a change in EV value (from EVVI to EW2) and while EV

values remained constant and equal to EVVl, DV values changed at least once
and homogeneous = FALSE

(
/*

SSETI is the dataset subset lying in the interval strictly below _rq/Vl.

STEP1: calculate entropy of the distribution on the DV range for the

dataset subset lying in the interval strictly below EVV! (SEETI)

STEP2: Calculate the level of significance of the difference in
distribution between dataset and SSETI.

STEP3: If the the level of significance is below criterion and the

entropy is below the minimal entropy calculated so far, then
optimal_bound is assigned with EVVl

STEP4: repeat same procedure as above for EEET2

STEP5: set homogeneous to TRUE

*/

Entropyl = H(SSETI, DV)

sl = DIFFDIST(dataset, SSETI, DV)

if(Entropyl < H(dataset, DV) & Entropyl< optimal_bound & sl < criterion)
then optimal_bound = EVVI

Entropy2 = H(SSET2, DV)

s2 = DIFFDIST(dataset, SSET2, DV)

if(Entropy2 < H(dataset, DV) & Entropy2 < optimal_bound & s2 < criterion)
thQn optimal_bound = EVV2

homogeneous = TRUE;

Case4: no change in DV value

/* Do nothing */

} /* end of for loop */

end OPTIMAL_SPLIT
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